

Modelling the impact of shortened TB treatment: why such variation?

Gwen Knight

Overview

• What drives the impact of a shorter-course regimen?

• Example of a 4 month regimen ("REMox")

Variation across modelling results

Implications

Why me?

- TB Alliance funded project
 - Explore potential impact of REMox as trial went along
 - Modelling of impact on transmission
 - Cost-effectiveness modelling of REMox using patient data from trial sites
- Transmission modelling suggested:
 - Impact on cases / deaths of 4mo regimen (2015-2035): < 3%

Modelling TB spread

- Dynamic TB models = more TB if more people with infectious TB
- People on treatment = non-infectious

Impact of "shorter-course" regimen

DEFINITELY

Reduce patient burden and costs

MAY

- Improve "cure" rates
- Improve completion rates
- Improve uptake of treatment
- Reduce side effects (shorter = less exposure?)

DEFINITELY

Reduce patient burden and costs

MAY

- Improve "cure" rates
- Improve completion rates
- Improve uptake of treatment
- Reduce side effects (shorter = less exposure?)

DEFINITELY

Reduce patient burden and costs

MAY

Improve "cure" rates

(more who finish, cured)

(more finish)

(more start)

Unknown size

Improve uptake of treatment

Improve completion rates

• Reduce side effects (shorter = less exposure?)

(Knight et al., 2015)

Impact: 4month regimen, total cases over 20yrs = < 3% Model duration of treatment completed "REMox"

DEFINITELY

Reduce patient burden and costs

Unknown size

MAY

- Improve "cure" rates
- Improve completion rates
- Improve uptake of treatment
- Reduce side effects (shorter = less exposure?)

Assumed:
SC same efficacy but
divided over 4 not 6mo

Assumed: SC prevents defaulters at mo 5/6 (but no deaths in months 5/6)

(Knight et al., 2015)

Short course assumed to:

- (1) Have same efficacy, but over 4mo not 6mo
- (2) Increase proportion
 completing treatment
 ("saves" those that default
 at mo5/6)
- "Non-inferior" assumptions
- Assumed scale-up of treatment and continuing background improvements in TB control

97% cured if complete, 1.5% default rate

(Murray & Salomon, 1998)

HIV projections

and BCG efficacy)

11%

Short course assumed to: (1) Increase cure rates to 95% within 10 years

Table 1. Case-detection and cure rates for new smear-positive tuberculosis cases in three DOTS scenarios 1995 and 2020

Region	1995 rate, %	2020 rate, %				
		DOTS-H	DOTS-M	DOTS-L		
		Smear-positive case-detection rate				
EME	91	96	95	94		
FSE	70	96	90	81		
LAC/MEC	64	83	80	78		
Asia	50	70	62	56		
SSA	35	70	50	45		
		Smear-positive cure rate				
EME	86	98	95	93		
FSE	70	95	90	85		
LAC/MEC	67	88	85	82		
Asia	50	80	62	56		
SSA	50	80	75	68		

DOTS-H, high uptake; DOTS-M, medium uptake; DOTS-L, low uptake.

Baseline cure rate ranges from

50 – 86% in 1995

56 – 98% in 2020

(Salomon *et al.*, 2006)

Impact greater when default higher (compare distance between lines)

Short course assumed to:

(1) Increase cure rates (by not having the default and death at later months: assumed same default rates per month and same failure rates at end)

Cure probabilities

(same default / mortality / cure at end rates)

DOTS program85%93%Non-DOTS program50%80%

Short course assumed to:

(1) Increase treatment success proportion

> Factor = relative shortening = relative reduction in treatment failure

Active disease treatment regimens

- 1. 4 months
- 2. 2 months + 90% efficacy against drug-resistant strains
- 3. 10 days + 90% efficacy against drug-resistant strains

(Fofana et al., 2014)

Impact: 4month regimen, incidence at 10yrs = 2%
2month regimen, incidence at 10yrs = 4%
0.5 month, incidence at 10yrs = 7%

Model duration of treatment completed

Short course assumed to:

- (1) Increase treatment completion (REMox)
- (2) Same efficacy by completion of stage of treatment = greater proportion of total treatment (REMox)
 - (3) Avert mortality in later months of therapy (not in *REMox*)

Summary

Reference

- (1) Murray, 1998
- (4) Fofana, 2014
- (2) Salomon, 2006
- (4) Fofana, 2014
- (3) Abu-Raddad, 2009
- (4) Fofana, 2014
- (5) Knight, 2015

Implications

- Impact of shorter course higher when default rates higher (if assume shorter course avoids later default)
 - Explored in Salomon, Fofana, Knight
 - Explains big difference in Fofana vs. Salomon (latter has higher default)

- Treatment success proportion important
 - e.g. Abu-raddad 84% vs. 89%, Knight: 96.1% vs. 96.3%

Conclusions

- If "on treatment" non-infectious, then unlikely that a shorter-course regimen would have effect on transmission
 - => "Just" improve adherence / success of current regimens?

- Unless default rates high
- Unless treatment success / cure rates much higher for shorter-course
- Impact of shorter-course on uptake not taken into account in models so far
- Variation in impact due to
 - Outcome indicator
 - Time frames
 - Uncertainty in effect & effect size of shorter-course regimen

Acknowledgements:

- "REMox" modelling team: Anna Vassall, Richard White, Gaby Gomez, Frank Cobelens, David Dowdy, Alice Zwerling
- Pete Dodd
- TB Alliance (then), USAID (now): William Wells

Salomon vs Fofana

Salomon

Cure probabilities						
	Standard	Short				
DOTS program	85%	93%				
Non-DOTS program	50%	80%				

Monthly default rates: 1.5% (DOTS), 7.5% (non-DOTS)

Failure probabilities at finish: 3% (DOTS), 6% (non-DOTS)

constant

Different levels of DOTS / non-DOTS included over time

Fofana

Table 1. Model inputs for TB treatment outcomes, by treatment phase.

Outcome	Treatment phase					
	Week 0-2	Week 3-8	Month 3-4	Month 5-6	Total	
Duration	2 weeks	6 weeks	2 months	2 months	2 weeks-6 months	
Percentage defaulting (sensitivity analysis range)	0.2% (0–1.0%)	1.9% (0–4.1%)	2.7% (0–5.7%)	2.2% (0–4.8%)	7.0% (2–15%)	[1,6]
Percentage dying (sensitivity analysis range)	1.1% (0.5–2.1%)	1.3% (0.6–2.5%)	0.8% (0.4–1.7%)	0.8% (0.4–1.7%)	4.0%	[1,28–30]
Percentage completing treatment period	98.7%	96.8%	96.5%	96.9%	-	
Cumulative percentage remaining in therapy	98.7%	95.0%	92.1%	89.0%	89.0%	

By time of impact measurement

