Application of Phase 2C — The CRUSH-TB Trial

(Combination Regimens for Shortening TB Treatment)

TBTC CRUSH TB Working Group INTER-TB Meeting, London, UK September 9, 2019

TBTC CRUSH TB Protocol Team Members

- Jason Stout, MD, MHS
- Kelly Dooley, MD, PhD
- Charles Bark, MD
- Debra Benator, MD
- Joseph Burzynski, MD
- Eduardo Gotuzzo, MD
- Michelle Haas, MD
- Hanh Nguyen Thuy, MD
- Anneke Hesseling, MD, PhD
- Elisa Ignatius, MD
- Silvia Jiménez
- Grace Muzanye, MBChB, MSc
- Eric Nuermberger, MD

- Samuel Gurrion Ouma, MD
- Patrick P.J. Phillips, PhD
- Caryn Upton, MBBCh
- Michael Vjecha, MD
- Ziyaad Waja, MBChB
- Cynthia C. Chirwa
- Marie Theunissen
- Wendy Carr, PhD
- Jessica Ricaldi, MD, PhD
- Nigel Scott, MS
- Katya Kurbatova, MD, PhD, MPH

Microbiology, pharmacology, pediatrics, community, clinicians, biomarkers, drugs, international/US, young/old

TBTC mission (from <u>By Laws</u>):

"... to conduct <u>programmatically relevant</u> clinical, laboratory, and epidemiologic research concerning the diagnosis, clinical management, and prevention of tuberculosis infection and disease."

CRUSH-TB Working Group Mandate

Middle Development

- Identify <u>regimens</u> likely to successfully shorten TB treatment
- Working in the phase 2b/2c space
 - At least early evidence for efficacy (EBA/Phase 2a)
- Efficiently select candidates for further study (phase 3)

Programmatically Relevant

Regimens have potential for administration under routine program conditions

Unmet medical need

- Choice/options, for patients and clinicians
- Shortened duration, for patients and programs

Some innovations, broadly useful to TB field Phase 2C

- Treatment consists of promising new regimen(s) (focus on **shorter-course**), typically **given for intended duration**, **plus a standard control**
 - Microbiologic endpoint (8-wk culture conversion/time to conversion) is primary, but follows all
 patients for failure/relapse to capture this crucial endpoint
 - The failure/relapse endpoint is critical, can provide a probabilistic assessment of how likely the novel regimens will be successful if studied in a phase III trial that enrolls similar participant population

Adaptive design

 Allows you to add regimens later in the trial, when more safety/efficacy information is available for promising drugs

Parallel animal model studies examining same regimens

Embedded biomarker (sputum LAM?)

ADVANTAGES: safety/microbiology for full duration (e.g. 4 mos); early information about relapse for decision-making; flexibility in light of emerging data in a rapidly evolving field; building translational and inter-phase modeling

Study Schema

^{*}Patients with INH-monoresistant TB could be randomized in parallel, but only to arms without H

The Drugs

Regimen components— rationale Drug #1: Bedaquiline (highest treatment shortening potential of new drugs to date)

Lung CFU counts after 1 month of treatment

Relapse rates after treatment

	Proportion (%) relapsing after			
	st	topping trea	atment at	:
Regimen	M1	M2	M3	M4
R		15/15	13/15	6/13
		(100%)	(87%)	(46%)
RH		14/15	7/13	
		(93%)	(54%)	
P	10/15	0/15		
	(67%)	(0%)		
В		13/15	2/14	4/14
		(87%)	(14%)	(<mark>28</mark> %)

Bedaquiline (B) has sterilizing activity ≥ rifampin (R) in mice

Bedaquiline- emerging efficacy and safety data

Fig. 10. Forest-plot of adjusted Hazard Ratios on a number of co-variates for Cox regressions and Logistic regression analyses

Regimen components— rationale Drug #2: Pyrazinamide (Do we need this drug? What does it add?)

IV infxn of outbred Swiss mice

Aerosol infxn of inbred BALB/c mice

Group ^b	Bacter	Bacterial count (log_{10} CFU) (mean \pm SD)				
	Day 0	1 mo	2 mo	negative at 2 mc		
Untreated	7.2 ± 0.5					
J		4.1 ± 1.8	2.3 ± 0.7	22		
JZ		1.6 ± 1.6	0, 0	100		
JR		4.7 ± 1.1	1.9 ± 1.0	30		
JH		3.8 ± 1.9	1.9 ± 1.0	20		
JM		4.6 ± 0.5	2.1 ± 1.1	22		
RZ		5.4 ± 0.6	1.9 ± 0.9	20		
RM		5.5 ± 0.9	3.1 ± 0.5	20		
RH		5.1 ± 0.4	3.1 ± 1.1	0		
HZ		5.5 ± 0.6	3.9 ± 0.7	0		
JZM		1.4 ± 1.2	0.03 ± 0.1^{c}	78		
JZR		2.3 ± 1.5	0.07 ± 0.2^d	70		
JZH		1.7 ± 1.4	0.18 ± 0.5^{e}	78		
JRH		4.4 ± 1.1	1.2 ± 1.1	20		
JRM		4.4 ± 0.3	1.4 ± 0.8	11		
RMZ		4.6 ± 0.8	1.4 ± 0.4	20		
RHZ		3.9 ± 0.7	2.2 ± 0.6	0		

B + Z=Potent sterilizing combo

Slide from Eric Ibrahim et al, AAC 2007

Clinical results: JZ in extended EBA

Figure 2: Bilinear regression showing the fall in mean log 10 CFU from baseline CFU=colony forming unit.

	Days 7-14
Bedaquiline	14 (0.123 [0.097])
Bedaquiline-pyrazinamide	15 (0.152 [0.120])
Bedaquiline-PA-824	14 (0.114 [0.069])
PA-824-pyrazinamide	14 (0.124 [0.080])
PA-824-moxifloxacin-pyrazinamide	13 (0.175 [0.146])
Isoniazid-rifampicin-pyrazinamide- ethambutol	10 (0.136 [0.102])

Clinical results: BZM(Pa) in NC-005 (TB Alliance)

Design

n.b. M added to shore up the B-Z-Pa regimen in patients with MDR-TB

Results

% culture negative at 2 months

1:00.00

Cal: al av

		Liquid cx	Solid cx
Regimen	Population	Overnight	Overnight
B _(loading) ZPa	DS	66%	89%
B _(200mg) ZPa	DS	75%*	84%
BZM-Pa	MDR Z-sensitive	96%*	100%*
BZM-Pa	MDR Z-resistant	78%*	95%*
HRZE control	DS	51%	86%

^{*} statistically significant vs HRZE

Regimen components— rationale Drug #3: Moxifloxacin— bactericidal (we need this) AND gets into lesions AND has anaerobic/sterilizing activity

BALB/c mice, Aerosol infection

_	% (proportion) relapsing after treatment for:				
Treatment	1 month 2 months		4 months		
2RHZ/3RH			100% (15/15)		
PZM	100% (15/15)	100% (15/15)			
BZM	100% (15/15)	33% (5/15)	0% (0/14)		

Swiss mice, IV infection

	% (proportion) relapsing after treatment for:				
Treatment	3 month	4 months	5 months	6 months	
2RHZ/3RH			50% (10/20)	27% (5/18)	
PZM	100% (20/20)	32% (5/19)			
BZM			18% (3/16)	0% (0/20)	

- 1. BZM shortens treatment by \geq 3 months compared to RHZ
 - 2. BZM is superior to PZM

- 1. BZM is superior to RHZ
- 2. BZM is comparable to PMZ

BZM is treatment-shortening in mice

Tasneen et al, AAC (2011);55:5485

Andries et al, AAC (2010);54:4540

M contributes to efficacy of BMZPa regimen

	Proportion (%) of mice relapsing after treatment for:					
Drug regimen	M1	M1.5	M2	M3	M4	M5
RHZ					15/30	2/15
					(50)	(13)
BPaZ		25/29	2/30	0/15		
		(86)	(7)	(0)		
BPaMZ	15/15	7/32	0/30	0/15		
	(100)	(22)	(0)	(0)		

Composite results of 2 experiments

Lesion PK and activity— new findings in rabbits and humans

Back to NC-005...

Design

n.b. M added to shore up theB-Z-Pa regimen in patientswith MDR-TB

Results

% culture negative at 2 months

Liquid ov

Calid av

		Liquia cx	Solia cx
Regimen	Population	Overnight	Overnight
B _(loading) ZPa	DS	66%	89%
B _(200mg) ZPa	DS	75%*	84%
BZPa+M	MDR Z-sensitive	96%*	100%*
BZPa+M	MDR Z-resistant	78%*	95%*
HRZE control	DS	51%	86%

^{*} statistically significant vs HRZE

QTc considerations

Change in QTcF interval from baseline in NC-005 trial

	Mean Change (msec)	95% Confidence Interval
B(loading)PaZ	21.9	18.2 – 25.7
B(200mg)PaZ	20.4	15.1 - 25.7
BPaZM (MDR)	21.9	18.7 – 25.0
HRZE control	10.2	7.0 – 13.4

- In US, when BDQ is used for 24 weeks—
 - ECG at baseline, 2, 12, and 24 weeks
 - Note that ECG changes with BDQ peak at 8 weeks and then stabilize
 - Note that M's QT effects go away immediately when drug stopped
- French cohort- Among patients getting BDQ for prolonged course, QT prolongation >500ms associated with high-dose MXF (800mg) or methadone, not moxifloxacin 400mg Guglielmetti Eur Resp J 2017
- ACTG A5343, DLM Phase 3- Adding DLM to any regimen increases QT by just 8 ms

Regimen components— rationale Drug #4: Do we need one? What are best options?

	8 7		
FU	6 -		
ပ		→ JMZ	
log ₁	4 -	─ JMZP	a
Lung log ₁₀ CFU	2 -	I	
			<u> </u>
	0 +	1	
	0	•	2
	Мо	nths of treatme	nt

Nude

	Proportion relapsing after treatment for:			
Regimen	1 month	1.5 months	2 months	
JMZ	13/13	2/15 (13%)	0/15	
JMZPa	n.d.	3/15 (20%)	0/16	

	Proportion relapsing after treatment for:		
Regimen	2.5 months		
JMZ	4/16 (25%)		
JMZPa	1/18 (6%)		

Pa contributed bactericidal activity to the JMZPa regimen but no significant contribution to sterilizing activity was detected

Yes, probably--4th drug may reduce relapse in hard-to-treat patients

Regimen components— rationale Drug #4: What are best options? Argument for delamanid

NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans

Gengenbacher (Dartois, Barry, Cole, Kaufmann) 2017 Scientific Reports

Martin Gengenbacher^{1,2}, Maria A. Duque-Correa^{1,7}, Peggy Kaiser¹, Stefanie Schuerer¹, Doris Lazar¹, Ulrike Zedler¹, Stephen T. Reece^{1,8}, Amit Nayyar^{3,9}, Stewart T. Cole⁴, Vadim Makarov⁵, Clifton E. Barry III^{3,6}, Véronique Dartois² & Stefan H. E. Kaufmann¹

Nitroimidazoles kill those bacilli that are hard-to-kill in necrotic lesions

Regimen components—rationale Drug #4: What are best options? Argument for rifamycin

Relapse data, chronic mouse model

Day -17: log CFU 4.41; Day 0: log CFU 8.32

24, 27118 61 6 1112, 24, 61 18 61 6 6162				
	% (proportion) relapsing			
	W6 (+12)	W8 (+12)	W10 (+12)	
PZM		47%	13%	
		(7/15)	(2/15)	
BZ	93%	67%	53%	
	(14/15)	(10/15)	(8/15)	
BZ <u>P</u>	33%¹	$0\%^{1}$		
	(5/15)	(0/15)		

¹p≤ 0.005 vs. BZ

Adding a rifamycin to BZ gives impressive increase in activity

Swiss mice, IV infection

BZR > RMZ > RHZ $BZH \ge RMZ > RHZ$

Treatment	Proportion (%) with positive <i>M.tb</i> cultures 3 mo after completing treatment for:			
group	2 months	3 months	4 months	6 months
2RHZ/4RH				17% (5/30)
2RMZ/2RM		84% (16/19)	42% (8/19)	
2BZR/2BR	56% (10/18)	28% (5/18)	13% (2/15)	
2BZH/2BH	68% (13/19)	72% (13/18)	29% (5/17)	

Combos of BZ plus R or H are treatmentshortening, R >H

Regimen components— rationale Drug #4: What are best options? Which rifamycin?

TABLE 5 Effect of steady-state rifamycin on bedaquiline pharmacokinetic parameter estimates

	Treatment group ^a			
Parameter	Rifabutin		Rifampin	
	GMR	CI	GMR	CI
C _{max}	0.910	0.776-1.068	0.803	0.705-0.915
t _{1/2}	1.012	1.037-1.172	1.056	1.002-1.112
AUC ₀₋₃₃₆	0.901	0.789-1.028	0.554	0.519-0.599
AUC ₀	0.918	0.808-1.044	0.565	0.523-0.610
CL/F	1.089	0.958-1.238	1.771	1.640-1.912
V/F	1.200	1.067-1.350	1.869	1.689-2.068

GMR, geometric mean ratio; CI, confidence interval.

Rifapentine and rifampin reduce bedaquiline concentrations (would need 1000 QD for 2 weeks, then 1000 TIW)

Rifabutin does not meaningfully reduce BDQ exposures

Healan 2018 AAC

Linkages to other treatment-shortening studies in DS-TB

- PANACEA 2 STAGE STUDY (Phase 2B SUDOCU, then 4-mo 2C):
 - High-dose rifampin with or without high-dose PZA
 - Bedaquiline/Delamanid/Moxifloxacin + Sutezolid (U) (dose finding for U, then including that dose in 2C)
- TBA SimpliciTB (Phase 2/3): **Bedaquiline/moxi/pretomanid/PZA**
 - 4 BPaMZ
- BMRC TRUNCATE-TB (Phase 3): Multiple drugs
 - 2 HR₃₅ZELinezolid (extend to 3 mos for persistent + sx/smear)
 - 2 HR₃₅ZEClofaz
 - 2 HP₁₂₀₀ZLinezolidLevoflox
 - 2 HBZELevoflox

Adaptive design—to consider: DprE1 inhibitors- completely new drug class

*DprE1 inhibit	tor - Inhibits decaprenyl-phosp	horibose epimerase (DprE1) involved in cell wall arabinan bi	osynthesis
OPC-167832	Otsuka Pharmaceutical Development & Commercialization, Inc.	Activity against replicating and dormant intracellular bacilli; Active in acute and chronic murine models; No antagonism with other TB drugs; Additive effect with Dlm exceeding RHZE	NCT03678688 (1-2, enrolling)
BTZ043	University of Munich, Hans- Knöll Institute, Jena, German Center for Infection Research (DZIF)	Superior to INH at 2 months in mice (6 month pending) No antagonism with existing drugs, apparent synergy in vivo with Bdq-Rif Low level CYP450 interaction	NCT03590600 (1, enrolling)
Macozinone, PBTZ169	iM4TB-Innovative Medicines for Tuberculosis, Bill & Melinda Gates Foundation, Nearmedic Plus LLC	Highly active against replicating bacteria; No antagonism with RHZE, synergy in vitro with Bdq, Cfz, Dlm, sutezolid Prior formulation with good tolerability, bactericidal activity against DS TB at 640mg	NCT03776500 (1, pending)
TBA-7371	TB Alliance	Efficacy in vitro and in mice Phase 1 trial complete on food effect, optimal dose, DDI, PK, PD as single dose or multiple doses	NCT03199339 (1, complete; 2, pending)

The Design

Study design: CRUSH-TB

Rationale:

Optimization of new and existing drugs to make a <u>complete regimen</u>, considering properties needed to shorten treatment duration plus safety, for a public health purpose

Design:

Phase IIC, randomized, open-label, ≥3-arm trial assessing the safety and efficacy of 4-month BZM-based regimens compared to 6-month standard of care among adult patients with drug-sensitive pulmonary TB

Arm	Weeks 0-8	Weeks 9-17	Weeks 18-26
1	BMZ+Rb	BMRb	
2	BMZ+D	BMD	
3 (standard Rx)	HRZE	HR	HR

Rb=rifabutin; M=moxifloxacin; B=bedaquiline; D=delamanid; H=isoniazid; E=ethambutol; Z=pyrazinamide; R=rifampicin

<u>Duration</u>: Until last participant reaches 12 months of follow-up

Sample size: 90/arm

Inclusion/Exclusion Criteria

Inclusion

- Pulmonary TB without concurrent CNS or bone involvement
- Age 12 and older
- AFB smear-positive (at least 1+) or GeneXpert positive (medium/high)
- If HIV+, CD4 at least 100 cells/mm³

Exclusion

- >5 days of TB treatment in past 6 months
- Resistance to INH, RIF, or fluoroquinolones
- Pregnancy
- QT prolongation
- Unacceptable baseline labs
- History of aortic dissection/aneurysm

Endpoints

Primary

Time to sustained sputum culture conversion in liquid media

Secondary

- Safety (proportion of grade 3-5 AEs by arm)
- Tolerability (all-cause discontinuation by arm)
- Alternative microbiologic endpoints (e.g. solid media, 8-week culture conversion)
- Pharmacodynamic analyses
- Long-term efficacy outcome (phase 2C outcome)

Procedural Highlights

- Randomization stratified by site (African/not African) and cavity (Y/N)
- 7/7 dosing with 5/7 DOT and SAT doses on weekends
- Intensive PK sampling in convenience sample, sparse PK sampling in all
- Serial microbiologic and safety monitoring, including ECG
- Follow-up until last participant is 12 months post treatment completion
 - Provides extra information on delayed relapse while keeping the trial short

Key Issues Debated and +/- Decided

- Dosing schedule for bedaquiline (200 QD x 8 weeks, then 100 QD)
- Dosing schedule for delamanid (200mg QD) (with food)
- Flat vs. weight-based dosing for pyrazinamide (1500 <50kg, 2000>50kg)
- Duration of pyrazinamide (2 months)
- Biomarkers: sputum LAM
- Media type/standardization (solid YES and not standardized; liquid YES)

To sort still:

- resistance testing for bedaquiline and delamanid
- Logistics of ECG evaluations
- CDA \rightarrow CTA

Preclinical link

(Stay tuned— Nuermberger lab to test different combinations in different mouse models....)

CRUSH Summary

- Phase 2C trial, 3+ arms, 90/arm
- Estimated 18 months to enroll, additional 12 months of followup after last participant=total trial duration ~30 months
- Will complement efforts by other groups, elucidating some key questions (e.g. additional activity of rifamycin plus bedaquiline, activity of delamanid vs. pretomanid in regimen)
- BZM backbone
 - BZ is most potent two-drug regimen in mice; B with sterilizing activity better than rifamycins; BZM backbone performed extremely well in human trials (NC-005); drug with good bactericidal activity in the regimen (M); Oral, once daily, few side effects, all drugs taken by hundreds of patients with good safety profile; Compatible with first-line ART regimen (dolutegravir) without dose adjustment
- With 4th drug to shore things up, give best shot at exceptional activity (rifabutin, delamanid, maybe a DprE1 inhibitor added via adaptive design)
- PhC format will provide concrete guidance on likelihood of success in phase 3, facilitating planning of "next trial"; concurrent preclinical work for translational links

Thanks again-- CRUSH TB Protocol Team Members

- Jason Stout, MD, MHS
- Kelly Dooley, MD, PhD
- Charles Bark, MD
- Debra Benator, MD
- Joseph Burzynski, MD
- Eduardo Gotuzzo, MD
- Michelle Haas, MD
- Hanh Nguyen Thuy, MD
- Anneke Hesseling, MD, PhD
- Elisa Ignatius, MD
- Silvia Jiménez
- Grace Muzanye, MBChB, MSc
- Eric Nuermberger, MD

- Samuel Gurrion Ouma, MD
- Patrick P.J. Phillips, PhD
- Caryn Upton, MBBCh
- Michael Vjecha, MD
- Ziyaad Waja, MBChB
- Cynthia C. Chirwa
- Marie Theunissen
- Wendy Carr, PhD
- Jessica Ricaldi, MD, PhD
- Nigel Scott, MS
- Katya Kurbatova, MD, PhD, MPH

Microbiology, pharmacology, pediatrics, community, clinicians, biomarkers, drugs, international/US, young/old

Extra slides

Most promising (currently-available) backbone for treatment shortening: rationale for BZM

- BZ is most potent two-drug regimen in mouse model; B with sterilizing activity better than rifamycins
- BZM backbone performed extremely well in human trials (NC-005)
- We need to have a drug with good bactericidal activity in the regimen (M)
- Oral, once daily, few side effects, taken by hundreds of patients with good safety profile, well-tolerated
- Compatible with first-line ART regimen (dolutegravir) used in US and increasingly globally, without dose adjustment

4th drug (to add activity, prevent resistance)on-the-shelf possibilities to demonstrate JZM shortening safely

BZM+rifamycin

- Highest potency in animal models, this regimen has 4 drugs with sterilizing activity
- Proof of concept with rifabutin (and if the rifamycin is *needed* to shorten therapy, then can consider Rifapentine (P) with B dose adjustment because of DDI)
- Effective for INH-monoresistant TB (present in ≥10% of isolates globally)

BZM+delamanid

- JZM alone may or may not be adequate to shorten treatment
- Nitroimidazoles add some activity to BZM regimen, very active in necrotic lesions
- DLM has nice safety profile, is registered in several settings
- Rifamycin- and isoniazid-sparing
- Regimen could be used in INH-resistant TB (and MDR TB where PZA is active)
- Comparison can be made to similar regimens in SimpliciTB (BZMPa) and PanACEA (BDSM) trials
 --Is Z needed? Is Pa = D, or is Pa better?

S=sutezolid, M=moxifloxacin, B=bedaquiline, Pa=pretomanid, D=delamanid