### 

### It's all about the microbiology

### - so let's make sure it's right

Prof Tim McHugh UCL-TB & UCL Centre for Clinical Microbiology

### **Critical end points**

https://www.cdc.gov/tb/webcourses/tb101/page3294.html

### **Sputum Smear negativity**

#### **Culture negativity**



(c) Timothy McHugh - used with permission

### 



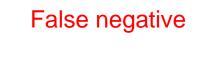
(c) Timothy McHugh - used with permission

#### Both require competent microbiology

# SimpliciTB: Primary and Secondary Objectives and Endpoints are based on TB Laboratory data

To evaluate the **efficacy**, safety and tolerability at 2 months, 12 months and 24 months in participants with Drug Sensitive and Drug Resistant TB

- Incidence of bacteriologic failure or relapse, or clinical failure at 24 months (104 weeks)
- Proportion of participants with sputum culture conversion to negative status in liquid culture at 4, 6, 12 and 17 weeks
- Time to culture negativity over 8 weeks


#### **Inclusion Criteria:**

- Results of AFB microscopy & molecular tests on sputum to be obtained during screening period
- If MGIT DST later shows discrepancy with molecular tests, participant may be late exclusion

### What are the issues with microbiology?

## 

- Smear
  - Missed organisms
  - Miss identified
    - Artefacts
    - Other mycobacteria



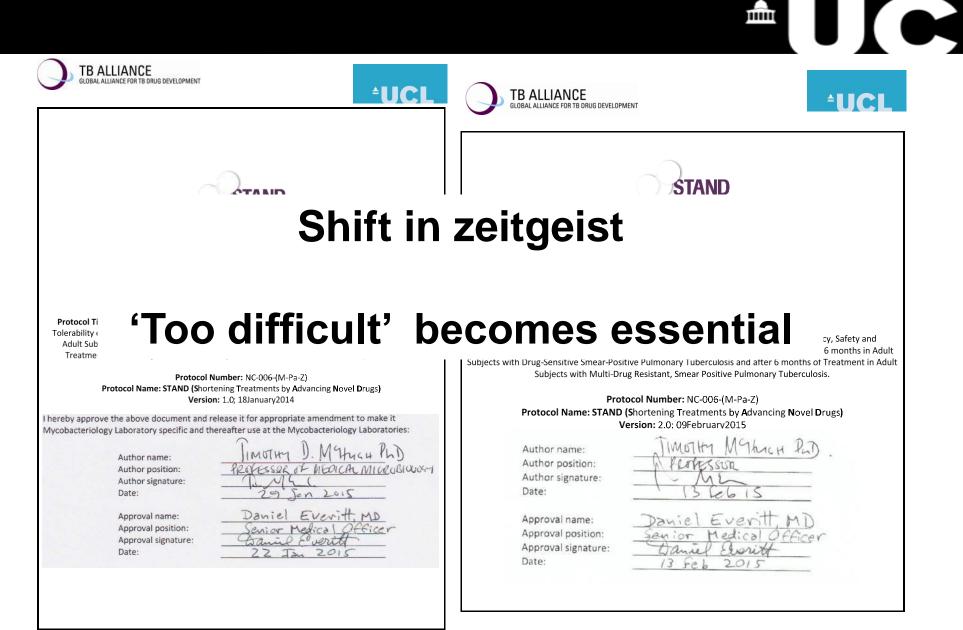
False positive

- Culture
  - No growth
    - +/-
    - Time to positivity
  - Too much growth
    - contamination

#### False negative

Under estimate of bacterial load

Indeterminate results


Clinical diagnosis: clinical trails: discovery research Same data - different paradigms

- All laboratories chosen are using acceptable methods for TB diagnosis
- But these methods are not necessarily standardized across laboratories
  - e.g. WHO versus American CDC reporting of smear positivity

| No. of AFBs (average over 100<br>fields) | REMoxTB<br>Reporting | WHO Reporting<br>(for conversion only) |
|------------------------------------------|----------------------|----------------------------------------|
| None                                     | No AFB seen (NS)     | No AFB seen (NS)                       |
| 1-9 per 100 fields                       | +                    | scanty/or actual<br>number)            |
| 1-9 per 10 fields                        | ++                   | Ŧ                                      |
| 1-9 per field                            | +++                  | <b>++</b>                              |
| >9 per field                             | ++++                 | +++                                    |

- Differences could introduce bias
- Limit confidence in cross-comparison of data

### Rigour in delivery of microbiology



### Quality framework

### 

- A comprehensive Mycobacteriology Laboratory Manual provided by the sponsor must be followed to ensure the same procedures are used across all laboratories.
  - Essential for the **strength** and **integrity** of the trial data

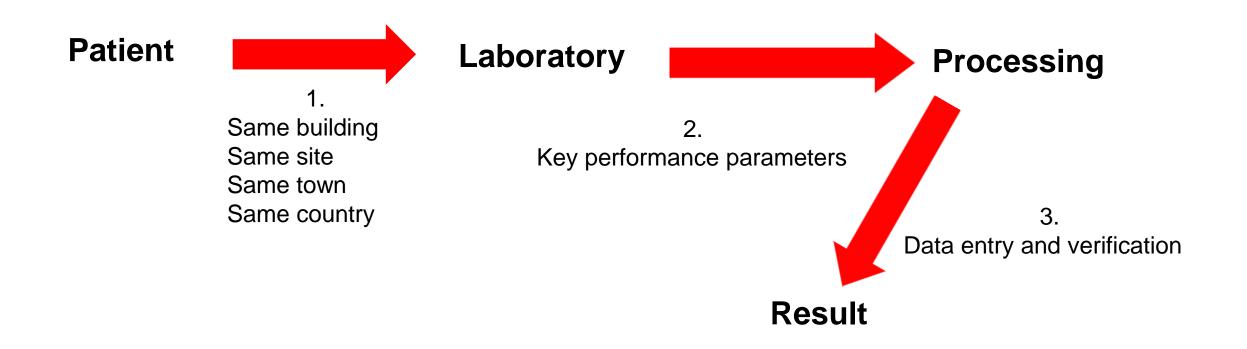
### The results generated by the laboratory must be unquestionable for the study to be a success

- Essential to ensure the **consistency** and **validity** of the results obtained
- Rigorous assessment, set-up and monitoring of labs, as well as periodic data reviews (remote monitoring) are performed by the sponsor representatives

#### Elements of a quality framework

### 

(c) Timothy McHugh - used with permission


### Reliability of data

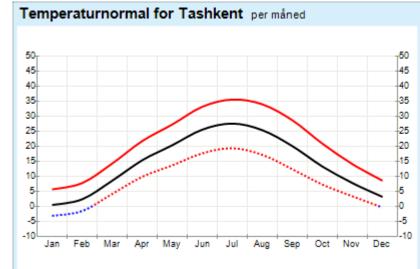
#### • Safety

#### • Training

### The sample journey

### 




#### Each step represents a challenge to reliability of results

*Key performance parameters:* 1. Sample transfer & receipt

### 

Temperature range for sample transfer





**Consequences:** 

1. No growth

2. Contamination

3. Sample lost

• Time from collection to processing

## *Key performance parameters:* **2. Sample processing**

- Time to Zn
- Time to molecular test
- Time to inoculation in MGIT

- Flag positive
  - Time to Zn
  - Time to blood culture result
  - Time to MGIT speciation

Consequences:

- 1. Operational
  - Workload accumulation
  - Late exclusion of patient
- 2. Microbiological
  - Failure to identify contamination

### 

### **Contamination rates**

### 

#### Acceptable range: 3 – 8%

- Contamination rates reflect the overall performance of a laboratory
- They are multi-factorial:
  - Sample handling
  - Sample type
  - Laboratory environment
  - Staff competence and professionalism
- Too low depleting mycobacteria in the sputum, false negatives
- Too high lost data points due to contaminated cultures

### *Key performance parameters: 3. Results – resolving discrepancies*

- Operational
  - Data entry
  - Data verification
- Microbiological
  - Laboratory errors
  - Biological artefacts
  - Unexpected biological observations
- Missing data
  - Redundancy, more samples collected than required for ultimate analysis

### Monitoring of laboratory data

### 

- Regular standardised review of all mycobacterial data in database – undertaken remotely
- Output of this review:
  - $\circ~$  To direct onsite laboratory monitoring
    - o provides overview of laboratory performance
    - identifies areas of concern that may require additional site visits/additional training needs
  - Identify data queries (mistakes with data entry into eCRF)
  - Identify clinical sites that are not recalling patients for additional sputum sampling as required in the protocol

### 'Cradle to grave' site supervison

### 

### Example overview of laboratory visit schedule from selection to study closeout



### Data to prove my point?

### 

### No

Processes designed for Quality Improvement

Data incursions result in:

- Investigation of cause
- Plan for correction
- Monitored implementation

Success demonstrated by lack of trace in the study database

### 

# Rigorous quality management of laboratory procedures minimises uncertainty in the data

#### Acknowledgments

### 

#### Currently @ UCL

- Nada Ahmed
- Dr Anna Bateson
- Dr Angela Crook
- Dr Stella Fabiane
- Robert Hunt
- Prof Neil Stoker
- Jenna Wills







