

Chronology of events

27. Jan 20

Identification of the first SARS-CoV-2 infection in DE at the Tropical Institute in Munich (subsequently 15 cases)

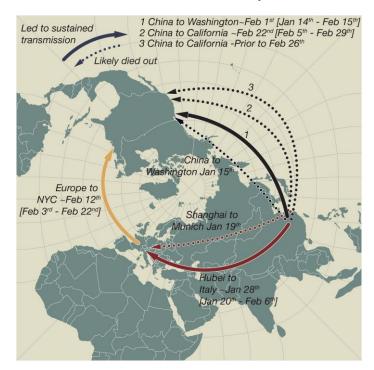
The NEW ENGLAND JOURNAL of MEDICINE

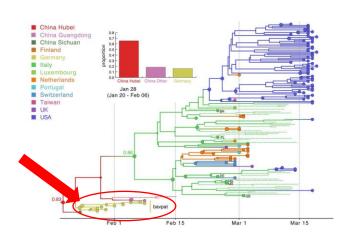
CORRESPONDENCE

Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany

online: N ENGL J MED JAN 30, 2020

Study claiming new coronavirus can be transmitted by people without symptoms was flawed


By Kai Kupferschmidt | Feb. 3, 2020 , 5:30 PM

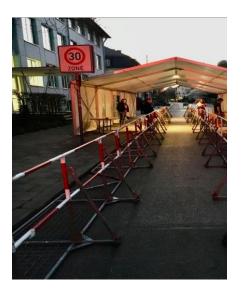

Initial spread of the virus

SARS-CoV-2 introductions to Europe and the US.

Michael Worobey et al. Science 2020

MCC tree of SARS-CoV-2 entry into Europe.

Michael Worobey et al. Science 2020



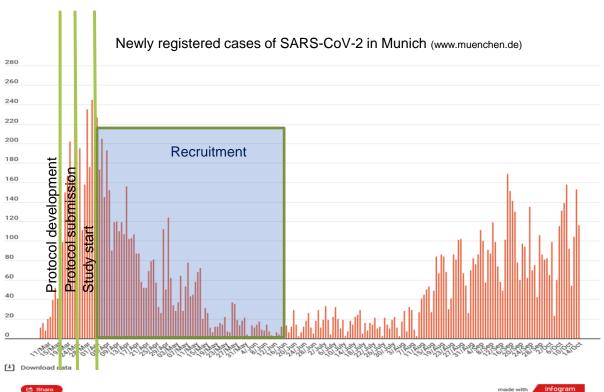
Chronology of events

27. Jan 20 Identification of the first SARS-CoV-2 infection in DE at the Tropical Institute in Munich (subsequently 15 cases)

02. Mar 20 Next SARS-CoV-2 cases in Munich after Ski-holidays

17. Mar 20 Establishment of a drive-through station at the institute

Chronology of events


27. Jan 20	Identification of the first SARS-CoV-2 infection in DE at the Tropical Institute in Munich (subsequently 15 cases)
02. Mar 20	Next SARS-CoV-2 cases in Munich after Ski-holidays
17. Mar 20	Establishment of a drive-through station at the institute
19. Mar 20	Concept idea for a population-based study to monitor the effect of social distancing measures
20. Mar 20	partial lock-down announced by the Bavarian Government
30. Mar 20	Submission of study protocol and temp. approval 2 days later
03. Apr 20	Official announcement of the study
05. Apr 20	Study start
12. Jun 20	Completion of the enrolment of 3.004 households and 5842 household members

KoCo19 Study in context of the newly infected and registered individuals

Start early or later?

- Expected low prevalence and uncertain sensitivity and specificity of serological assays -> positive predictive value very low.
- There was no clear forecast how the epidemic would evolve so better start early than never.
- Assess data and samples that never can be retrieved anymore.
- Early data are important to refine strategy an iterative process of learning and improving study concepts on the fly.

It is a long-term project

Challenges

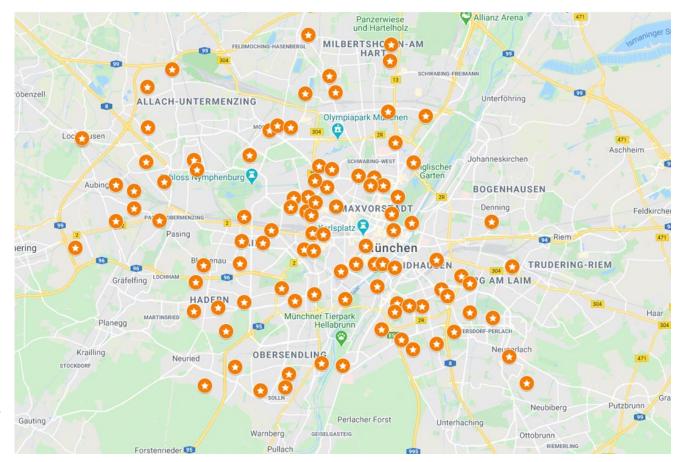
- At the beginning of the pandemic (January March) all "experts" were busy organizing local emergency aid and informing politicians and the public.
- A coordinated approach between different research groups was practically impossible.
- There were no established scientific networks. Infection epidemiology is a weakly developed field of research in Germany.
- We did not know of similar activities in Germany, Europe or world-wide.
- There were no immediate financial resources available.
- The lack of an established research toolkit (assays) requires until today a high degree of flexibility.
- The pace of scientific knowledge gain is still so high today that the concepts have to be constantly updated.
- For the first time in the science of history, the project is in the middle of public interest and has become a live documentation.

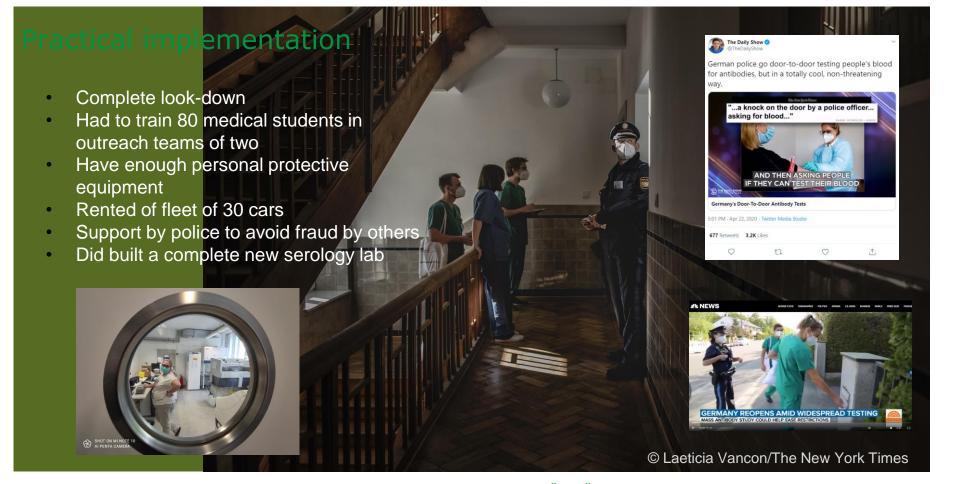
The New York Times

By Katrin Bennhold | Photographs by Laetitia Vanco

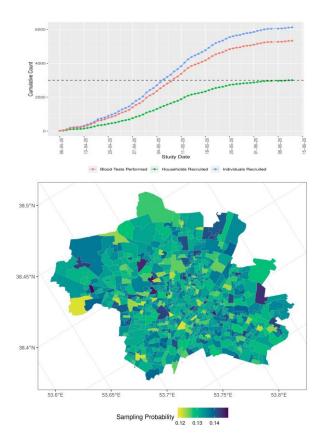
Published April 18, 20

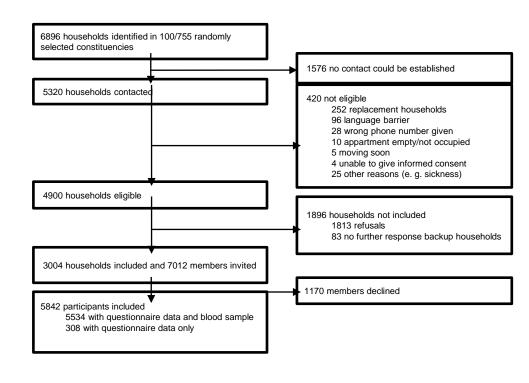
NEW YÖRKER

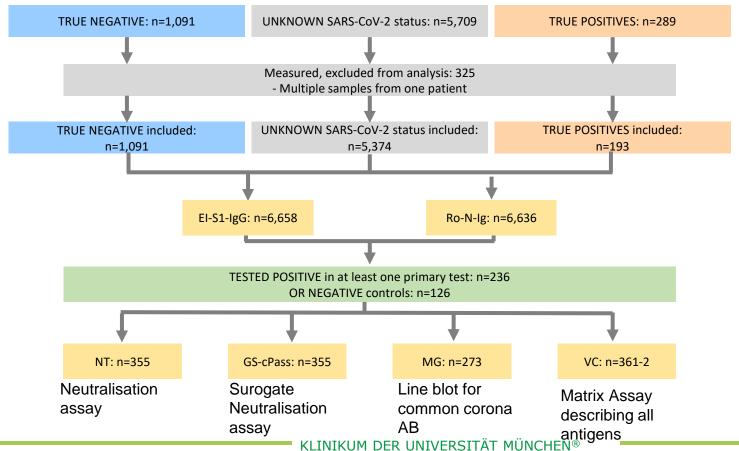



Study objectives:

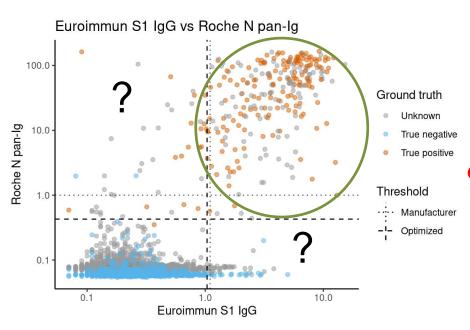
- To describe the SARS-CoV-2 antibody prevalence in the a representative sample of the general population in Munich.
- To understand the proportion of identified versus unrecognized infections.
- In what regards are reognized and unrecognized individuals different (biologically and socioeconomical)
- What is the transmission rate in a household?
- Determine the durability of antibodies after infection.
- Describe the influence do social isolation measures on the incidence?
- To track changes of social behaviour change within the cohort, and what impact does individual behaviour have on the individual risk of infection?
- What is the socio-economic impact of the pandemic and the measures to combat it, in particular on the employment situation and psychological endpoints.


Study design

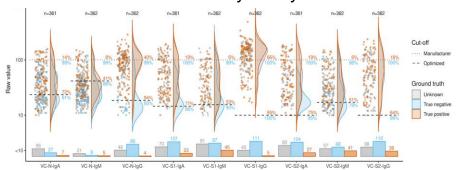

- Starting points of the random route in 100 of 755 constituencies
- 30 households are selected in each constituency
- Each HH includes all HH members
- For people over 14 years of age 2.7 ml of blood was taken. For children under 14 years of age 300ul was collected from the fingertip. (starting on 15.05)
- Everyone filled out a weekly electronic questionnaire on their state of health
- Repetitions every12 weeks or according to epidemiological situation



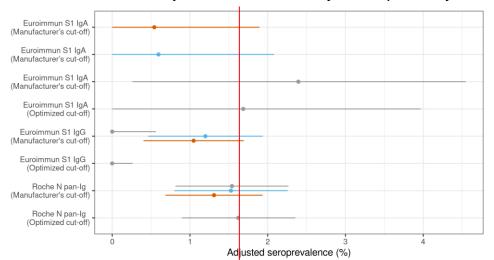
Recruitment:



Validation of 7 assays



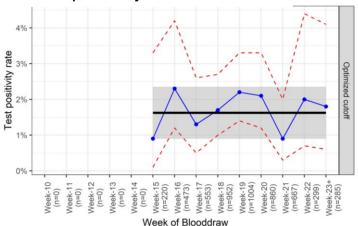
Performance of assays


Classifier	Specificity Manufacturer	Specificity Optimized	Sensitivity Manufacturer (low)	Sensitivity Manufacturer (high)	Sensitivity Optimized
Euroimmun S1 IgA (Manufacturer's cut-off)	0.924	0.933	0.917	1.000	0.648
Euroimmun S1 IgA (Optimized cut-off)		0.926			0.648
Euroimmun S1 IgG (Manufacturer's cut-off)	0.993	0.980	0.875	1.000	0.772
Euroimmun S1 IgG (Optimized cut-off)		0.978			0.798
Roche N pan-lg (Manufacturer's cut-off)	0.998	0.998	0.853	0.995	0.855
Roche N pan-Ig (Optimized cut-off))	0.997			0.886

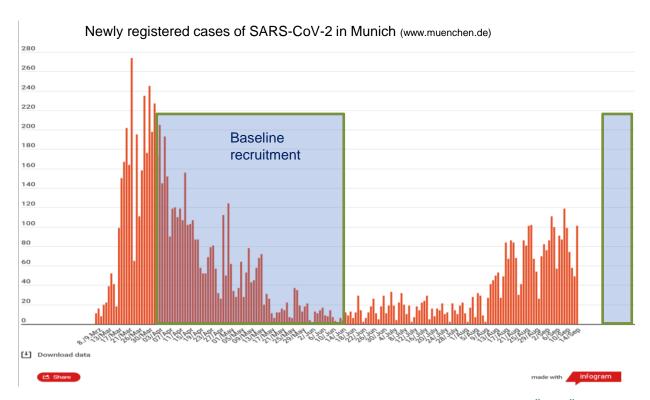
Performance of confirmatory assays

Prevalence

Prevalence adjusted for sensitivity and specificty



1,6% Seroprevalencevs.0,4% registered positive PCR cases


Specificity/Sensitivity

- Manufacturer (high sensitivity)
 - Manufacturer (low sensitivity)
- Optimized

Seropositivity over time

Next steps?

Follow-up

How much has the proportion of undetected cases has changed since we are testing 4-5 times more?

Fingerprick self-sampling

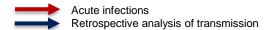
Automatisation of dried blood serology

Panthera puncher System

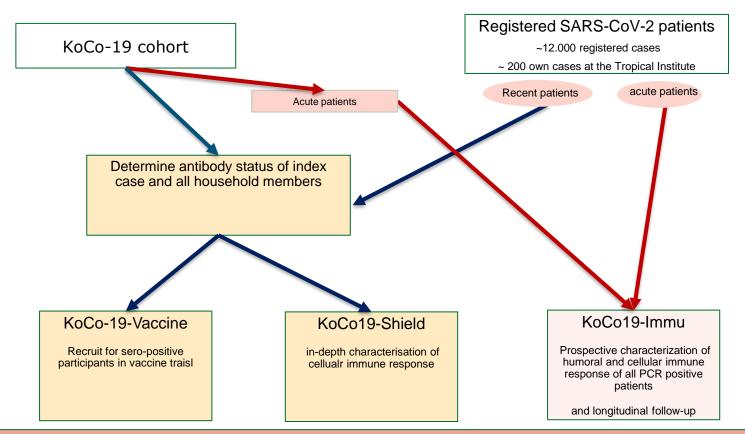
Elution of Antibodies

DBS are stable after drying:

Initial experiments compared: 4-7°C, 37°C, -20°C, -80°C


- -> for at least 4 days no significant changes in eluted functional Antibodies
- -> DBS are stable for extended periods; test now > 4 weeks

Robotic Cup-Transfer



Measurement (qualitative)

KoCo-19 study family

KoCo19-Reinfection

To study the probability of reinfection and ist risk factors

Additional SARS-CoV-2 seroprevalence studies

German National Cohort: longitudinal serosurvey in an existing cohort of 180.000 individuals in 16 regions in Germany (starting in January 2021)

Connecting European Cohorts to Increase Common and Effective Response to SARS-CoV-2 Pandemic: **ORCHESTRA**

Abteilung für Infektions- und Tropenmedizin

COVID-19 Serosurvey in Africa

Partner

- Jimma University Medical center (JUMC)
- Ludwig-Maximilians-University (LMU)
 Munich
- Helmholtz Center, Epidemiology

Populations

- Household based survey general population
- Target institutions (health facilities, schools, university, police)

Planned Activities:

- 1-3 monthly serosurveys (dry blood spots)
- eHealth data capture & dissemination (DHIS-2, SORMAS)
- Clinical, socio-economic, ecological, community assessments

Impact of Covid-19 infection on lung function in TB patients

Abteilung für Infektions- und Tropenmedizin

Tanzania

- NIMR-Mbeya Medical Research Center, Mbeya
- Ludwig-Maximilians-University (LMU) Munich

Ethiopia

- Asella Teaching and Referral Hospital
- · Heinrich-Heine-University Düsseldorf

Ghana

- Komfo Anokye Teaching Hospital (KATH), Kumasi,
- University Hospital Hamburg Eppendorf

Rwanda

- Université National du Rwanda, Butare
- Charité Universitätsmedizin Berlin

Kenya

- Kenyatta National Hospital, University of Nairobi
- · Goethe University Frankfurt

Uganda

- Kiruddu National Referral Hospital, Kampala
- University Hospital Leipzig

Studyteam

- Study design: M. Hoelscher, E. Saathoff, K. Radon
- Modelling: J. Hasenauer, C. Fuchs, A. Bakuli, N. Castelletti, F. Theis
- Testing: A. Wieser, R. Wölfel, V. Fingerle, M. Münchhoff, E. Zeggini, C. Geldmacher
- Clinical team: M. Pritsch, I. Kroidl, L. Oblrich, G. Froeschl, V. Thiel, D. Metaxa, C. Rothe
- Data Collection & Management: F. Riess, M. Diefenbach
- Socio-economic analysis: R. Leidl, L. Schwettmann, M. Laxy, S. Prückner
- Project management: J. Guggenbühl, O. Geisenberger, L. Hoffmann, A. Mekota, A. Heiber
- Communication: J. Eckstein
- Field team in alphabetic order: Alexander, Alina, Alisa, Anna, Charlotte, Claire, Clemens, Dafni, Ekaterina, Elias, Elmar, Emma, Eva, Felix, Flora, Friedrich, Friedrich, Hannah, Inge, Isabel, Isabel, Jakob, Jan, Janna, Jared, Jasmin, Jeni, Jessica, Jonathan, Julia, Julian, Julius, Kerstin, Konstantin, Kristina, Lara, Laura, Laura, Lea, Leonard, Leonie, Magdalena, Marius, Matthias, Max, Maximilian, Michael, Michael, Niklas, Norah, Patrick, Paul, Paula, Philine, Rebecca, Rebecca, Sabine, Silvan, Simon, Sonja, Sophie, Stefan, Stefanie, Thomas, Tim, Tim, Tobias, Ursula, Valeria, Vera, Verena, Vitus

Helmholtz7entrum münchen

KINKUM German Research Center for Environmental Health

Baverisches Landesamt für Gesundheit und Lebensmittelsicherh

Universität Bielefeld

Friedrich-Wilhelms-Universität Bonn

Thank you for your attention

More information www.KoCo19.de