

A good wheeze: the story of Cochrane Airways asthma reviews

A presentation to: Population Health Research Institute 09 May 2017

Trusted evidence. Informed decisions. Better health.

Topic selection

2010 Asthma Partnership project BTS/SIGN guidelines Speak to people Patient workshop

PPI

18 attendees

Professional facilitators

- 1. What do you do when you have an asthma attack
- 2. Problems/issues with regular inhaler
- 3. Asthma control

Survey online

"Asthma can take over your life but having the right support makes that easier to deal with." Informing research priorities by exploring the barriers and facilitators to asthma control: a qualitative analysis of survey data, Normansell R, Welsh E, Asthma Research and Practice20151:11, DOI: 10.1186/s40733-015-0011-5

Asthma management

Asthma education for school staff

Cognitive behavioural therapy (CBT) for adults and adolescents with asthma

- Home telemonitoring and remote feedback between clinic visits for asthma
- Interventions to improve adherence to inhaled steroids for asthma
- Interventions to improve inhaler technique for people with asthma
- Lay-led and peer support interventions for adolescents with asthma
- Patient- and parent-initiated oral steroids for asthma exacerbations
- Personalised asthma action plans for adults with asthma
- Pulse oximeters to self monitor oxygen saturation levels as part of a personalised asthma action plan for people with asthma
- Remote versus face-to-face check-ups for asthma
- Shared decision-making for people with asthma

Asthma therapies

Different oral corticosteroid regimens for acute asthma

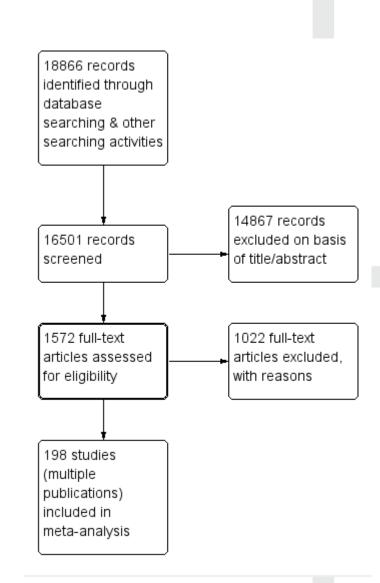
Cochrane

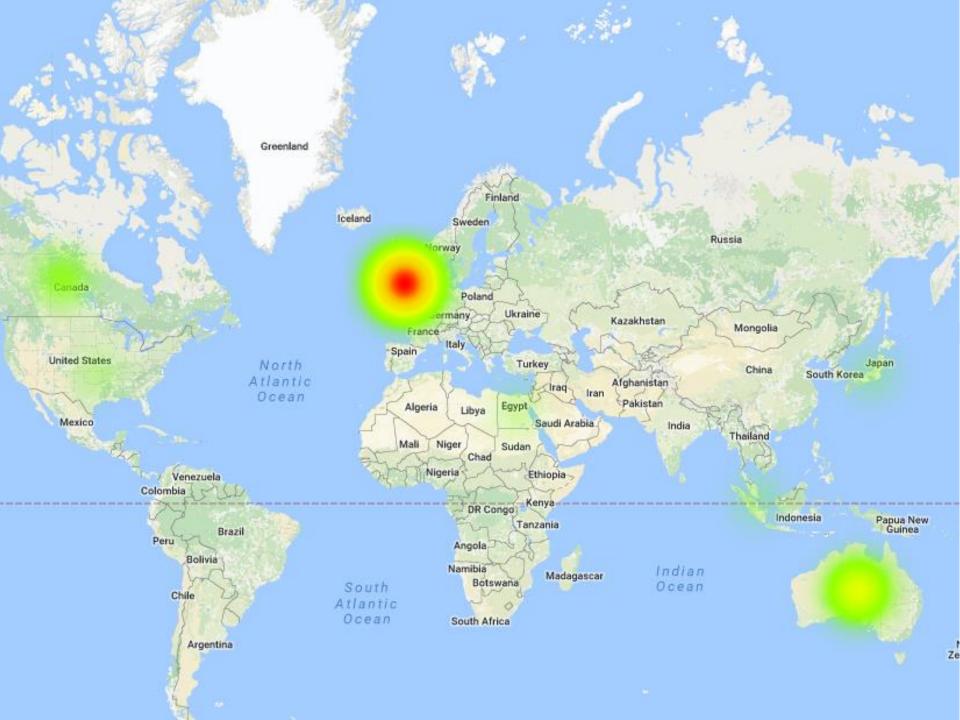
Airways

- Gastro-oesophageal reflux treatment for asthma in adults and children
- Increased versus stable doses of ICS for exacerbations of chronic asthma in adults and children
- LAMA added to LABA/ICS versus LABA/ICS for adults with asthma
- LAMA added to ICS versus addition of LABA for adults with asthma
- LAMA added to ICS versus higher dose ICS for adults with asthma
- LAMA added to ICS versus the same dose of ICS alone for adults with asthma

Stepping down the dose of inhaled corticosteroids for adults with asthma

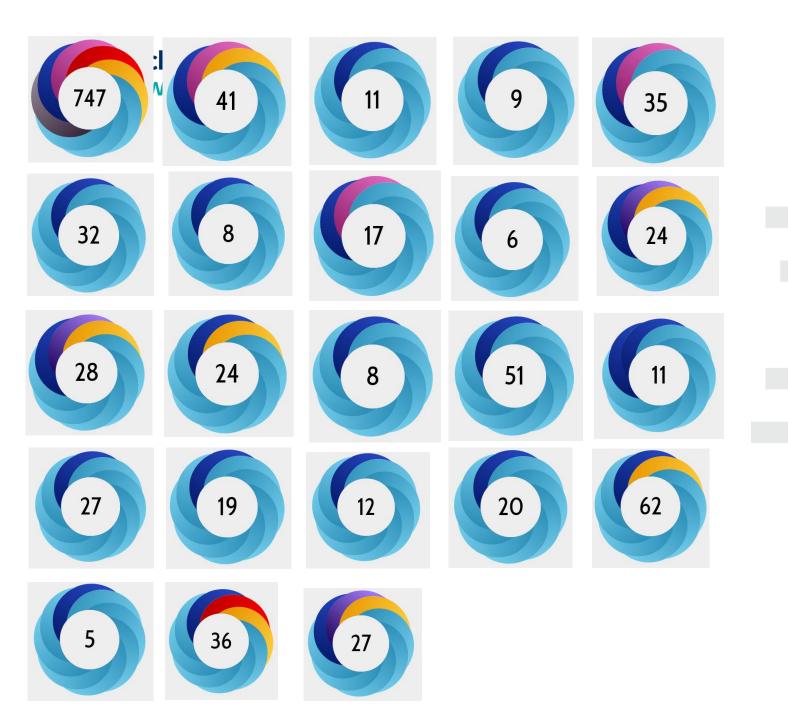
Stopping LABA for adults with asthma well controlled by LABA and ICS Stopping LABA for children with asthma well controlled on LABA and ICS Sublingual immunotherapy for asthma Vitamin D for the management of asthma


Asthma monitoring


Exhaled nitric oxide levels to guide treatment for adults with asthma Exhaled nitric oxide levels to guide treatment for children with asthma

Vital statistics

- 1 patient workshop
- 25 reviews
- 48 authors
- 72 peer reviewers
- 285 included studies
- 16 translations of 11 papers
- 334 meta-analyses
- 557,983 words



Timescale

Draft protocol: 2.0 months Publish protocol: 3.2 months Draft Review: 7.3 months Publish review: 4.2 months Title registered to review published: 14.6 months

	Month	9 Jan-15	10 Feb-15	11 Mar-15	12 Apr-15	13 May-15	14 Jun-15	15 Jul-15	16 Aug-15	17 Sep-15	18 Oct-15	19 Nov-15	20 Dec-15	21 Jan-16	22 Feb-16
	HORO	Varieto	1 60-10	Pigi 10		ridy"10	Varieto	Valeto	nug*10	0ep-10	00010	107-10	Decho	Varinio	1 00-10
JB-AST															
FEP1-AST															
FEP2-AST															
NO1-AST															
NO2-AST															
MA1-AST															
MA2-AST															
MA3-AST															
JL-AST															
\AP-AST															
S-AST															
3T1-AST															
LE1-AST															
ELE 2-AST															
MA4-AST															
F2-AST															
O-AST															
A-AST															
(Y-AST															
)M-AST															

Vitamin D for asthma:

Funding: This study was supported by a grant from the National Institute for Health Research (NIHR) under its Health Technology Assessment programme (reference No 13/03/25, to ARM). The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR, or the Department of Health. See the supplementary material for details of sources of support for individual investigators and trials. The NIHR was not involved in the study design; in the collection, analysis, or interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Out this Attention Score

In the top 5% of all research outputs scored by Altmetric

MORE...

Mentioned by

Commissioning Press release Support from comms Timing Hot topic

Out this Attention Score

In the top 5% of all research outputs scored by Altmetric

Mentioned by

72 news outlets
9 blogs
157 tweeters
39 Facebook pages
1 Wikipedia page
2 Google+ users

23 You Retweeted

NH:

NIHR

NIHR Dissemination @NIHR_DC · Mar 10

Half as many people attended hospital for #asthma treatment each year when taking #vitaminD

Vitamin D supplements can reduce risk of asthm...

People with mild to moderate asthma experience fewer severe asthma attacks if they take vitamin D supplements. This review found that the average n...

discover.dc.nihr.ac.uk

You Retweeted

Cochrane UK @ @CochraneUK · Mar 30 Listen up!

CochraneAirways @CochraneAirways

Podcast: Do injectable pneumococcal vaccines prevent pneumonia in people with COPD? #CochraneEvidence #COPD

CochraneAirways @CochraneAirways · Apr 18 What can your school do to prepare teachers to help in an asthma attack? bit.ly /2oa7TTN @TeacherToolkit @lookwhatjendid @tomwhitby

Could teaching teachers about asthma save lives? - Evidently Co... GP Dr Robin Carr discusses Cochrane evidence on whether asthma education for school staff could improve the care of children with asthma ...

evidentlycochrane.net

You Retweeted

MathioudakisAG @MathioudakisAG · Apr 1 Interventions to improve inhaler technique for people with #astr @CochraneAirways. bit.ly/2mOiesB

CochraneAirways @CochraneAirways · Apr 18

39 RCTs involving over 16,000 adults&children w/asthma. F-up median 6 months Most studies reported adherence to ICS

Interventions to improve adherence to inhaled s...

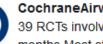
CochraneAirways @CochraneAirways · Mar 20

Guidelines recommend clinicians check pateints' inhaler technique regularly what is not clear is how to help &what impact will be achieved

du **1** 6

CochraneAirways @CochraneAirways · Apr 19

Weak evidence suggests lay-led&peer support interventions could lead to small improvement in asthma-related guality of life for teens...1/2


```
dt
```


Evidently Cochrane

Sharing health evidence you can trust

In this blog, GP Dr Robin Carr discusses the latest Cochrane evidence on whether could improve the care of children with asthma in schools and reduce asthma dea

" You can't be serious, kids still die of asthma in your country?" my shocked friend

I remember as a GP when I first arrived in Somerset that they were still talking abo some years earlier. At that stage, the number of asthma deaths was about 2000 pe

Preventing asthma deaths

The overall deaths from asthma have come down in the last 30 years but it still ren alarm that we all read The National Review of Asthma Deaths (NRAD) report on as are added risks in low-income, minority and ethnic groups for increased asthma n

The most shocking of all were the numbers of children who had died from asthma have helped, could have prevented their deaths. Most of them had not received an

There were a number of simple contributions that could have been made by the in and secondary care. The simplest of these was a Personalised Asthma Action Plan and schools had a significant part to play in this great responsibility and an oppor

Having witnessed many asthma attacks in adults and children, I can promise you as this would inevitably be spotted by the parents or child and make the situation exactly what to do and had the kit to do it, it was still alarming. I can only imagine parentis, as a teacher of an asthmatic child, when faced with a possible life threat to avoid this position and may even have considered their role as a teacher, if they

Finding out if teaching staff about asth

BY ROBIN CARR APRIL 13, 2017 // 2 COMMENTS 💓 TWEET 🕴 SHARE

Are long-acting muscarinic antagonists (LAMAs) effective in adults with poorly controlled asthma?

BY LYNDA WARE MARCH 24, 2016 // 0 COMMENTS 😏 TWEET 🧍 SHARE

Evidently Cochrane

Sharing health evidence you can trust

A blog for clinicians written by Lynda Ware, giving an overview care.

In the UK 5.4 million people are receiving treatment for asthma asthma, or, put another way, about 3 people every day. In add the NHS is around £1billion pounds per year. All this is happen

Long-acting muscarinic antagonists (LAMAs) are known to be obstructive pulmonary disease and this suite of four Cochrane considers whether they have a role in asthma management. La add-on therapy in the BTS/SIGN October 2014 guidelines for the management of asthma in adults, despite Spiriva (tiotropium) licence for the treatment of severe asthma in September 2014

What did the Cochrane review

The reviews looked at trials in which LAMAs were added to exis

The comparisons were:

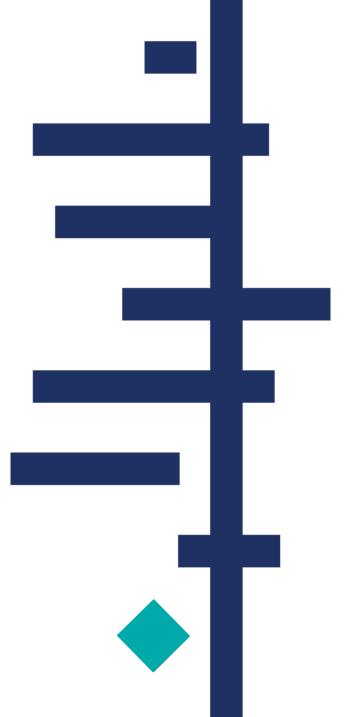
- LAMA + ICS versus same dose ICS
- LAMA + ICS versus higher dose ICS
- LAMA + ICS versus LABA + ICS
- LAMA + LABA/ICS versus LABA/ICS

where LAMA = long-acting muscarinic antagonist; ICS = inhaled

What were the outcomes?

The primary outcomes across all the reviews were:

- exacerbations requiring oral corticosteroids
- asthma-related quality of life



Preventing and treating asthma attacks

Four reviews:

- Sublingual immunotherapy
- Improve adherence to inhaled steroids
- Improving inhaler technique
- Finding the right dose of oral steroids

Sublingual immunotherapy for asthma

Sublingual immunotherapy for asthma

52 studies included, randomly assigning 5,077 participants to SLIT or control

Many different target allergens e.g. HDM, various pollens, cat dander, cockroach

Duration one day to three years

Largest study 834 participants, and the smallest 15

Sublingual immunotherapy for asthma

SLIT			Control			Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Alvarez-Cuesta 2007	0	17	0	16	0.7%	0.0000 [-0.1105, 0.1105]	
Calderon 2006 (1)	0	36	0	11	0.6%	0.0000 [-0.1190, 0.1190]	
Corzo 2014 (a) (2)	0	54	0	17	1.2%	0.0000 [-0.0800, 0.0800]	
Corzo 2014 (b) (3)	0	54	0	18	1.4%	0.0000 [-0.0762, 0.0762]	
Criado Molina 2002	0	16	0	16	0.6%	0.0000 [-0.1136, 0.1136]	
Dahl 2006	0	61	0	32	3.6%	0.0000 [-0.0473, 0.0473]	
Eifan 2009	0	15	0	14	0.5%	0.0000 [-0.1246, 0.1246]	
Fadel 2010	0	41	0	14	0.9%	0.0000 [-0.0966, 0.0966]	
Lue 2006	0	10	0	10	0.3%	0.0000 [-0.1741, 0.1741]	
Mosbech 2014 (4)	15	461	4	143	8.0%	0.0046 [-0.0269, 0.0361]	_ +
NCT00633919	2	63	2	61	2.1%	-0.0010 [-0.0633, 0.0612]	
Niu 2006	1	49	4	48	1.0%	-0.0629 [-0.1506, 0.0247]	
Pajno 2000	0	12	1	12	0.2%	-0.0833 [-0.2860, 0.1194]	←
Shao 2014	0	168	0	96	29.4%	0.0000 [-0.0164, 0.0164]	+
Stelmach 2009	0	20	0	15	0.7%	0.0000 [-0.1073, 0.1073]	
Troise 2009 (5)	0	14	0	10	0.3%	0.0000 [-0.1530, 0.1530]	
Vourdas 1998	0	34	0	32	2.4%	0.0000 [-0.0573, 0.0573]	
Wang 2014	4	322	1	162	27.3%	0.0062 [-0.0108, 0.0233]	
Wood 2014 (6)	0	61	0	28	2.9%	0.0000 [-0.0523, 0.0523]	
Zeldin 2013 (7)	0	47	0	16	1.1%	0.0000 [-0.0853, 0.0853]	
Zhang 2013	0	64	0	64	8.8%	0.0000 [-0.0300, 0.0300]	
Zheng 2012	0	53	0	53	6.1%	0.0000 [-0.0361, 0.0361]	
Total (95% CI)		1672		888	100.0%	0.0012 [-0.0077, 0.0102]	•
Total events	22		12				
Heterogeneity: Tau ² = 0		= 3.54.		P = 1.0	0); I ^z = 0%	6	
Test for overall effect: Z	-				-71. 87	-	-0.1 -0.05 0 0.05 0.1
	(5.1 0	,				Favours SLIT Favours control

SLIT Control				Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Alvarez-Cuesta 2007	0	17	0	16		Not estimable		
Bahceciler 2001	0	8	0	7		Not estimable		
Bousquet 1999	15	42	14	43	11.8%	1.15 [0.47, 2.82]		
Caffarelli 2000	0	24	0	20		Not estimable		
Calderon 2006 (1)	36	36	10	11	1.1%	10.43 [0.40, 275.32]		
Eifan 2009	0	15	0	14		Not estimable		
Gomez Vera 2005	0	30	0	30		Not estimable		
Ippoliti 2003	0	47	0	39		Not estimable		
Keles 2011	0	13	0	12		Not estimable		
La Grutta 2007	0	33	0	23		Not estimable		
Leng 1990	1	9	0	9	1.0%	3.35 [0.12, 93.83]		
Marogna 2005	4	29	0	23	1.3%	8.29 [0.42, 162.48]		
Mosbech 2014 (2)	290	461	77	143	37.4%	1.45 [0.99, 2.12]	- -	
Mungan 1999	2	15	0	11	1.1%	4.26 [0.18, 98.07]		
NCT00633919 (3)	24	63	21	61	16.4%	1.17 [0.56, 2.44]		
Niu 2006	6	49	7	48	7.5%	0.82 [0.25, 2.64]		
Shao 2014	39	168	9	96	15.0%	2.92 [1.35, 6.34]		
Troise 2009	11	14	4	10	3.4%	5.50 [0.91, 33.18]		
Vourdas 1998	8	34	2	32	4.0%	4.62 [0.90, 23.70]		
Total (95% CI)		1107		648	100.0%	1.70 [1.21, 2.38]	◆	
Total events	436		144					
Heterogeneity: Tau ² = I	0.04; Chi ²	= 11.53		(P = 0.)	32); I² = 1	3%		
Test for overall effect: 2	-		-				0.1 0.2 0.5 1 2 5 10 Favours SLIT Favours control	

Bottom line

- Insufficient evidence of efficacy for asthma
- Other SRs seem more promising but included metaanalyses with composite symptom scores and heterogeneity extremely high
- Validated tools such as AQLQ and ACT/ACQ would help
- Appears free from *serious* adverse effects in a mildmoderate asthma population
- Efficacy for allergic rhinitis more conclusive so may not be contraindicated in people with co-morbid asthma

Included RCTs assessing any adherence or inhaler technique intervention vs a control

Both adults and children

Separate comparisons for different types of intervention e.g. education, technology.

Adherence review included 39 studies and 16,303 participants

Inhaler technique review included 29 studies and 2,210 participants

Both adherence and inhaler technique interventions improved adherence and inhaler technique (!)

Measurement variation limited meta-analysis

Quality of life and asthma control often not measured, or measured but not using validated scales

Most studies underpowered or too short to detect differences in clinical outcomes such as exacerbations or admissions

Bottom line

- Despite over 18,000 people taking part in trials in these two reviews, conclusions are limited
- Cannot say for sure whether interventions lead to clinical benefits
- Many are labour-intensive and time-consuming; realistic?
- More research needed that includes clinical outcomes and combined technique and adherence

Cochrane Corner

Interventions to improve inhaler technique and adherence to inhaled corticosteroids in children with asthma

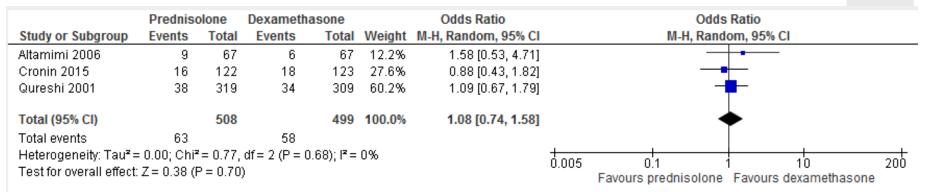
https://doi.org/10.1016/j.prrv.2017.03.014

Get rights and content

Included RCTs assessing any dose or duration of steroids versus any other dose or duration

Both adults and children

Separate comparisons adults and children – longer/higher dose course vs shorter/lower dose courses and prednisolone vs dexamethasone


We included 18 studies and 2,438 participants

Two primary outcomes - hospital admission and serious adverse events - events too infrequent

Symptoms reported in different ways

Secondary outcome meta-analysis e.g. relapse, lung function and adverse events limited

Bottom line:

- No convincing evidence of better outcomes with higher dose/longer courses or fewer side effects with the opposite
- Evidence not strong enough to suggest any change to existing guidelines
- Larger, well-designed trials required to support or challenge current practice

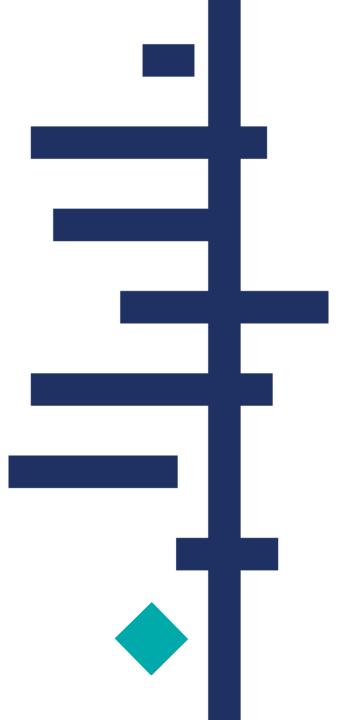
■ 4:26 🌒 💷

Podcast: Different doses and durations of oral steroids for asthma attacks

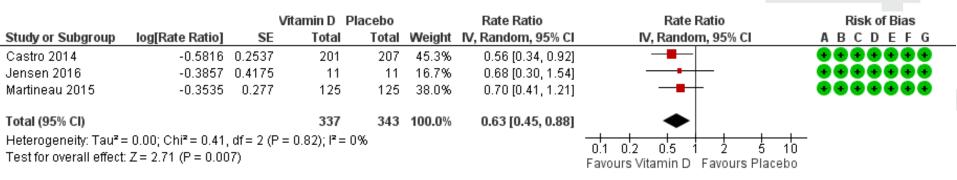
Corticosteroids are a widely used treatment for asthma and a recent addition to the collection of Cochrane Reviews on this condition examines the research that compared different ways of using corticosteroids. Rebecca Normansell (left) and Kayleigh Kew from the Population Health Research Institute at St George's in the University of London in the UK describe the findings of this May 2016 review in this Evidence Pod, starting with Rebecca.

Download podcast - Read transcript

This podcast in other languages: Русский



Our partners and funders



Vitamin D for asthma

Vitamin D for asthma reduces...

Risk of bias legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)

(G) Other bias

Rate Ratio of exacerbations requiring oral steroids

Vitamin D for asthma also reduces

			Vitamin D	Placebo		Odds Ratio	Odds	Ratio	Risk of Bias
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Rando	m, 95% Cl	ABCDEFG
Castro 2014	-1.194	0.5806	201	207	38.6%	0.30 [0.10, 0.95]			
Jensen 2016	0	0.8864	11	11	16.6%	1.00 [0.18, 5.68]			
Majak 2009 (1)	0	0	18	18		Not estimable			
Majak 2011 (2)	0	0	24	24		Not estimable			$\bullet ? \bullet \bullet \bullet \bullet \bullet$
Martineau 2015	-0.9671	0.6058	125	125	35.4%	0.38 [0.12, 1.25]		-	
Tachimoto 2016	-1.6032	1.1762	54	35	9.4%	0.20 [0.02, 2.02]		<u> </u>	
Urashima 2010 (3)	0	0	51	59		Not estimable			$\bullet \bullet \bullet \bullet \bullet ? \bullet \bullet$
Total (95% CI)			484	479	100.0 %	0.39 [0.19, 0.78]	•		
Heterogeneity: Tau ² =	0.00; Chi ² = 1.63,	df = 3 (P	= 0.65); l ² =	0%					
Test for overall effect:	Z = 2.65 (P = 0.00	8)					0.01 0.1 Favours Vitamin D	Favours Placebo	
<u>Footnotes</u>							<u>Risk of bias legend</u>	l	

- (1) No events in either arm
- (2) No events in either arm
- (3) No events in either arm

Risk of plas legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

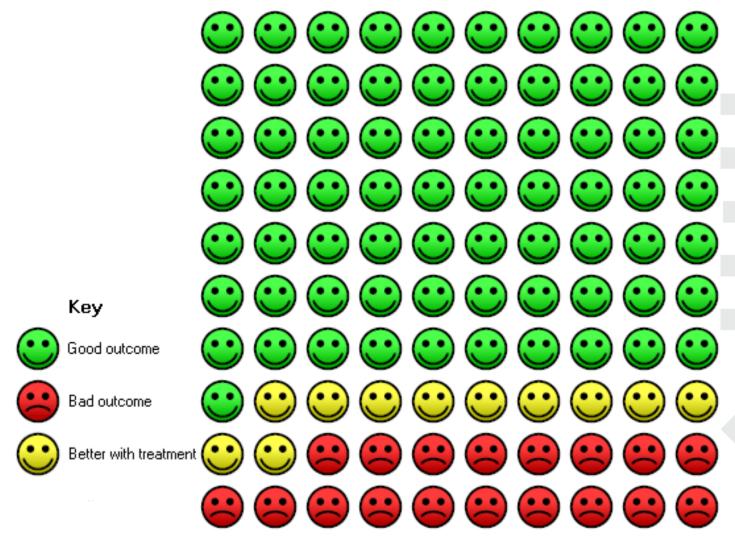
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Adults or children with hospitalisation or ED visit

In the control group 6 out of 100 people had a visit to ED or hospitalisation over 8 months, compared to 3 (95% CI 1 to 5) out of 100 on vitamin D.

Vitamin D for asthma

			Vitamin D	Placebo		Odds Ratio	Odds Ratio	Risk of Bias		
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	ABCDEFG		
Castro 2014	-0.3567	0.2855	201	207	21.4%	0.70 [0.40, 1.22]				
Jensen 2016	0.7419	0.8715	11	11	8.9%	2.10 [0.38, 11.59]				
Majak 2011	-1.4424	0.684	24	24	11.9%	0.24 [0.06, 0.90]				
Martineau 2015	0.1823	0.275	108	114	21.7%	1.20 [0.70, 2.06]				
Tachimoto 2016	-0.891	0.9401	54	35	8.1%	0.41 [0.06, 2.59]				
Urashima 2010	-1.8334	0.7906	51	59	10.1%	0.16 [0.03, 0.75]		$\bullet \bullet \bullet \bullet \circ \circ \bullet \bullet$		
Yadav 2014	-1.3499	0.4272	50	50	17.8%	0.26 [0.11, 0.60]		? • • • • • •		
Total (95% CI)			499	500	100.0%	0.53 [0.28, 0.99]	•			
Heterogeneity: Tau ² = 0.40; Chi ² = 17.04, df = 6 (P = 0.009); l ² = 65%										
Test for overall effect: Z = 1.98 (P = 0.05) Favours Vitamin D Favours Placebo										


Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Adults or children with study-defined exacerbation

11 people saved an exacerbation per 100

In the control group 29 out of 100 people had a study-defined exacerbation over 7 months, compared to 18 (95% CI 10 to 29) out of 100 on Vitamin D.

Grading the evidence was contentious

			Vitamin D	Placebo		Odds Ratio	Odds Ratio	Risk of Bias
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	ABCDEFG
Castro 2014	-1.194	0.5806	201	207	38.6%	0.30 [0.10, 0.95]		
Jensen 2016	0	0.8864	11	11	16.6%	1.00 [0.18, 5.68]	+	
Majak 2009 (1)	0	0	18	18		Not estimable		
Majak 2011 (2)	0	0	24	24		Not estimable		
Martineau 2015	-0.9671	0.6058	125	125	35.4%	0.38 [0.12, 1.25]		
Tachimoto 2016	-1.6032	1.1762	54	35	9.4%	0.20 [0.02, 2.02]		
Urashima 2010 (3)	0	0	51	59		Not estimable		$\bullet \bullet \bullet \bullet \bullet ? \bullet \bullet$
Total (95% CI)			484	479	100.0%	0.39 [0.19, 0.78]	•	
Heterogeneity: Tau ² =	0.00; Chi ² = 1.63,	df = 3 (P	= 0.65); l ² =					
Test for overall effect: Z = 2.65 (P = 0.008)							0.01 0.1 1 10 Favours Vitamin D Favours Place	100 bo
Footnotes							Risk of bias legend	

(1) No events in either arm

- (2) No events in either arm
- (3) No events in either arm

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Adults or children with hospitalisation or ED visit

Cochrane review - Authors' conclusions Whilst we are confident that Vitamin D reduced the risk of asthma exacerbation in these trials (high quality GRADE assessment), we recognise that there is uncertainty about how these findings might be applied in practice.

More research is needed to clarify whether there is a difference in effect between adults and children and with respect to asthma severity, baseline vitamin D status and doses.

Question one – the average effect

- We were confident that there was a reduction in exacerbations
 - In adults or children with mild/moderate asthma
 - -From a variety of different countries
 - -Given a variety of different Vitamin D treatments

Question one – the average effect

 Where measured, mean/median baseline serum 25(OH)D concentration ranged from 48 nmol/L, in <u>Castro 2014</u>, to 89 nmol/L, in <u>Majak 2011</u>; a small minority of participants had serum 25(OH)D concentrations in the profoundly deficient range (less than 25 nmol/L).

Question two – baseline Vitamin D level

- What about IPD data?
- This has now been published in relation to trials on Vitamin D for prevention of respiratory infections
- Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017;356:i6583

What about IPD data?

Results 25 eligible randomised controlled trials (total 11 321 participants, aged 0 to 95 years) were identified. IPD were obtained for 10 933 (96.6%) participants. Vitamin D supplementation reduced the risk of acute respiratory tract infection among all participants (adjusted odds ratio 0.88, 95%) confidence interval 0.81 to 0.96; P for heterogeneity < 0.001).

What about IPD data? Results (continued)

In subgroup analysis, protective effects were seen in those receiving daily or weekly vitamin D without additional bolus doses (adjusted odds ratio 0.81, 0.72 to 0.91) but not in those receiving one or more bolus doses (adjusted odds ratio 0.97, 0.86 to 1.10; P for interaction=0.05).

What about IPD data? Results (continued)

Among those receiving daily or weekly vitamin D, protective effects were stronger in those with baseline 25-hydroxyvitamin D levels <25 nmol/L (adjusted odds ratio 0.30, 0.17 to 0.53) than in those with baseline 25-hydroxyvitamin D levels ≥25 nmol/L (adjusted odds ratio 0.75, 0.60 to 0.95; P for interaction=0.006).

Figure S4: Cates plot illustrating reduction in risk of acute respiratory tract infection with daily/weekly vitamin D supplementation without additional bolus doses in A) participants with baseline serum 25(OH)D concentration <25 nmol/L,

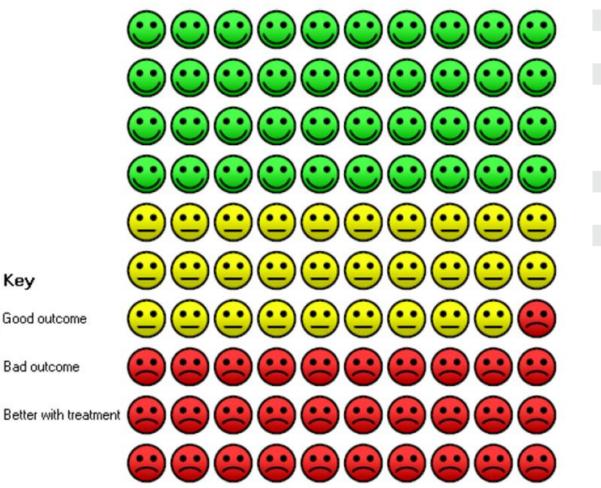
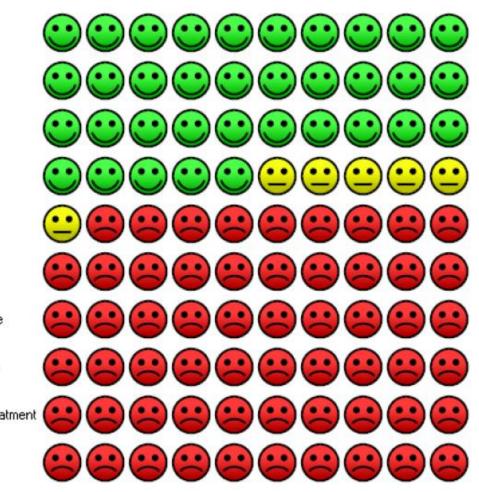



Figure S4: Cates plot illustrating reduction in risk of acute respiratory tract infection with daily/weekly vitamin D supplementation without additional bolus doses in B) participants with

baseline serum 25(OH)D concentration ≥25 nmol/L.

Β.

What about IPD data? Conclusions

Vitamin D supplementation was safe and it protected against acute respiratory tract infection overall. Patients who were very vitamin D deficient and those not receiving bolus doses experienced the most benefit.

What have we learnt?

Employed systematic reviewers are amazing!

Dissemination work is hard and time consuming but exciting and rewarding for those involved (but does it really make a difference??)

Working with volunteer authors is like herding cats, but can done

Slow and steady wins the race

Developed PPI skills